桥梁工程的永恒主题是卓越地跨越。未来的桥梁工程将面临更加恶劣的建设条件如强风、大震、深水、恶劣天气等;更多的功能需求,如公铁合建、全天候通车、高速铁路交通等;更加巨大的工程如琼州海峡、台湾海峡等的挑战。这就要求桥梁人在以下方面做好技术储备。
桥梁全寿命与结构耐久性设计
传统设计理论主要关注于结构的安全,没有涉及桥梁使用期的管理、养护、维修、构件更新、拆除等诸多问题。同时,在投资决策上,只注重建设期的投资成本,而不重视桥梁整个寿命周期内的总成本。
要卓越地跨越就需要逐步建立基于耐久性的全寿命设计理念,制定相应的规范和标准,使桥梁在设计和建造阶段就考虑到全寿命的使用性能和要求。对于巨型桥梁工程,投资巨大,应提高桥梁的设计寿命。
1500m以上跨度的应考虑200年寿命期。相应地,对钢材和混凝土性能提出了更高的耐久性要求,还应开发耐腐蚀、耐疲劳的超高性能材料,以适应桥梁高寿命的需求。
高性能材料研发及其结构体系的创新
建造材料的革新始终是推动桥梁工程发展的主要动力之一。从20世纪40年代起,各类轻质高强的高性能复合材料(CFRP,GFRP和AFRP)陆续登场。纤维增强聚合物(FRP)以其轻质、高强、耐腐蚀的优良性能成为一种颇具发展前途的新型材料。
FRP是各向异性材料,可根据工程需要采用不同材料、纤维含量和铺陈方式等不同工艺设计出不同强度指标、弹性模量及特殊性能要求的FRP构件。可以预见,今后复合材料将更普遍地出现在桥梁工程中。
伴随着新型材料的应用,传统桥梁结构体系可能从强度问题转变为刚度问题,因此必须加强研发与复合材料相匹配的新型桥梁结构体系;同时在计算、设计、制造、连接等方面,建立起一整套不同于传统材料的设计理论和方法,推动桥梁工程进入新的发展时期。
超深水基础建造技术
跨海长桥建设必然会遇到超深水基础问题。希腊Rion-Antirion桥的基础水深为65m,是目前已建桥梁的最大基础水深,采用了“加筋土隔震基础”和预制装配的桥墩。而琼州海峡中线和台湾海峡的水深均超过80m,因此对于水深为60~100m的超深水水域,需要开发出一种既便于深水施工,又经济耐久的新型深水基础形式,同时还要研发相应的大型基础施工装备。
创新施工装备和监测设备的研发
跨海长桥非通航孔的上部结构和下部基础墩身一般采用预制结构,部件质量将接近万吨级甚至更重,必须采用大型浮吊整体吊装施工以减少海上作业。目前挪威的“天鹅号”起重能力则达到9000t。
为了满足未来跨海长桥建设的需要,应当开发大型浮吊和巨型造桥机等施工装备。研发最先进的机电一体化技术,发展大型施工装备(建筑机器人),使更大的上、下部预制构件都能迅速、准确就位。智能监测设备(传感器、诊断监测仪、便携式计算机)以及大型智能机器人施工设备的创造发明,将使桥梁的施工、管理、监测、养护、维修等一系列现场工作实现自动化和远程管理。
桥梁设计理论和技术的发展
与新理念、新材料、新工艺建造桥梁相匹配的桥梁设计理论将得到发展和完善;桥梁抗风和减隔震技术将进一步发展以抵御强风、大震和恶劣天气的影响。IT技术和计算机处理能力的不断提高以及结构分析软件的不断进步将使桥梁设计更加精细化。在桥梁建设过程中实现继机械化、电气化、电子信息化之后的第4次工业革命——智能化,研发适合于桥梁工程的BIM 软件。
展望未来的桥梁工程,桥梁人将面临许多挑战,但同时也将迎来可以跨越宽阔海峡、战胜自然灾害、化解飓风,具有全新姿态和功能,跨越能力卓越的新桥梁。